Posted on

Particle physics. Physique des particules by C. DeWitt, Claude Itzykson

By C. DeWitt, Claude Itzykson

Show description

Read or Download Particle physics. Physique des particules PDF

Similar physics books

Additional resources for Particle physics. Physique des particules

Example text

The vector mesons are more massive than their pseudoscalar counterparts. For example, the pmeson has a rest mass energy of 767 MeV and the w-meson has 782 MeV, In contrast, the pion rest mass energies are 140 MeV for and 135 MeV for T O . As far as their wave functions are concerned, the vector and pseudoscalar mesons differ only in their total intrinsic spin, with S = 1 for the former and S = 0 for the latter. The large difference in their masses must come from the differences in the interaction between a quark and an aritiquark in the S = 0 and S = 1 states.

They are therefore “scalar” particles, as their wave functions are invariant under a rotation of the spatial coordinate system. However, unlike ordinary scalars, their wave functions change sign under a parity transformation. This may be seen in the following way. The parity of the pion is given by the product of the int,rinsic parities of the quark ($1) and the antiquark (-1) and the parity of the spatial wave function of the (@)-pair. The property of the spatial wave function under a parity transformation is related to the orbital angular momentum C and is given by (-l)t, the same a3 spherical harmonics of order e discuseed in $A-1.

A simple quark model of mesons, therefore, involves a quark and an antiquark moving with respect to each other with orbital angular momentum 4. The total angular momentum, or spin, of the system is J = 4 f S , where S = sq ST is the sum of the intrinsic spins of the quark and the antiquark. Since sq = ST = f , the possible value of S for a qpsystem is either 0 (singlet state) or 1 (triplet state). As for the spatial part of the wave function, it has been found that mesons with relative orbital angular momentum t = 0 are lower in energy, the same as in the case of atomic levels.

Download PDF sample

Rated 4.40 of 5 – based on 41 votes